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ABSTRACT
Objective: Obstructive sleep apnoea (OSA) is a risk
factor for vascular disease and other adverse
outcomes. These associations may be at least partly
due to early endothelin-1 (ET-1)-mediated endothelial
dysfunction (ED). Therefore, we assessed the
relationships between subclinical sleep apnoea and
plasma levels of ET-1.
Methods: We performed a population-based study
among 1255 young and healthy adults aged
25–41 years. Cardiovascular disease, diabetes or a
body mass index >35 kg/m2 were exclusion criteria.
Plasma levels of ET-1 were measured using a high-
sensitivity, single-molecule counting technology. The
relationships between subclinical sleep apnoea (OSA
indices: respiratory event index (REI), oxygen
desaturation index (ODI), mean night-time blood
oxygen saturation (SpO2)) and ET-1 levels were
assessed by multivariable linear regression analysis.
Results: Median age of the cohort was 35 years.
Median ET-1 levels were 2.9 (IQR 2.4–3.6) and
2.5 pg/mL (IQR 2.1–3.0) among patients with (n=105;
8%) and without subclinical sleep apnoea (REI 5–14),
respectively. After multivariable adjustment, subclinical
sleep apnoea remained significantly associated with
plasma levels of ET-1 (β=0.13 (95% CI 0.06 to 0.20)
p=0.0002 for a REI 5–14; β=0.10 (95% CI 0.03 to
0.16) p=0.003 for an ODI≥5). Every 1% decrease in
mean night-time SpO2 increased ET-1 levels by
0.1 pg/mL, an association that remained significant
after multivariable adjustment (β=0.02 (95% CI 0.003
to 0.033) p=0.02).
Conclusions: In this study of young and healthy
adults, we found that participants with subclinical sleep
apnoea had elevated plasma ET-1 levels, an association
that was due to night-time hypoxaemia. Our results
suggest that ED may already be an important
consequence of subclinical sleep apnoea.

INTRODUCTION
Obstructive sleep apnoea (OSA) is a highly
prevalent disorder, often underdiagnosed
and significantly associated with adverse out-
comes, including hypertension,1–5 stroke,6

coronary artery disease7 8 and sudden
death.9 10

Although the precise pathophysiology
linking OSA with vascular disease remains to
be delineated, endothelial dysfunction (ED)
may play a central role in this association.11 12

ED is characterised by reduced vasodilatation
and enhanced vasoconstriction, as well as by
increased prothrombotic and inflammatory
activity.13 In this context, endothelin-1 (ET-1)
has been implicated as an important factor
in the development of vascular dysfunction
and cardiovascular disease,14–17 suggesting
that ET-1 may be an easily measurable surro-
gate for endothelial function. ET-1 is
released by endothelial cells and increases

KEY QUESTIONS

What is already known about this subject?
▸ Prior research has demonstrated a tight relation-

ship of sleep apnoea with hypertension and
other cardiovascular events among patients with
clinical sleep apnoea syndrome.

What does this study add?
▸ This is the largest population-based study

among young and healthy adults investigating
the relationship of subclinical sleep apnoea and
plasma endothelin-1 (ET-1) levels. This study
demonstrates that apnoea-induced hypoxaemia
is significantly related to increased ET-1 levels,
suggesting that endothelial dysfunction may be
an important consequence of obstructive sleep
apnoea already at a subclinical stage.

How might this impact on clinical practice?
▸ This association is independent of other import-

ant cardiovascular risk factors (eg, smoking,
body mass index, blood pressure, renal func-
tion, high-sensitivity C reactive protein, glycated
haemoglobin, low-density lipoprotein, high-
density lipoprotein) and supports the importance
of even subclinical sleep apnoea in the develop-
ment of cardiovascular disease.
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vascular tone by acting on underlying smooth muscle
cells in a paracrine manner.
The resulting imbalance between vasodilator and vaso-

constrictor endothelial mediators with overproduction of
ET-1 increases vascular permeability and decreases
antithrombotic activity, thereby promoting the occur-
rence of vascular disease.18 19 ED is therefore considered
an early state of atherosclerosis and cardiovascular
disease20 and may constitute a potential link that relates
OSA with adverse cardiovascular outcomes. Preliminary
evidence from animal models of sleep apnoea and data
from patients with OSA support this hypothesis, but data
from large-scale population-based studies are currently
unavailable.21 In addition, it remains unclear whether
impaired vascular function is an early manifestation of
OSA, or whether it may be a consequence of
OSA-related comorbidities such as hypertension or
obesity. Finally, quantification of endothelial function
has been difficult and time-consuming, particularly in
large-scale population-based studies. The emergence of
new ET-1 assays facilitates its measurement and enables
easier ET-1 quantification in large populations.22

To address some of these issues, we assessed the rela-
tionships between subclinical sleep apnoea (respiratory
event index (REI)=5–14, oxygen desaturation index
(ODI) ≥5, mean night-time blood oxygen saturation
(SpO2), and per cent of sleeping time with SpO2<90%)
and plasma levels of ET-1 in a large cohort of young and
healthy adults.

METHODS
Study participants
The genetic and phenotypic determinants of blood pres-
sure (BP) and other cardiovascular risk factors (GAPP)
study is an ongoing prospective population-based cohort
study in the Principality of Liechtenstein. Details
about study design and methods have been described pre-
viously.23 Briefly, between May 2010 and December 2013,
all inhabitants of the Principality of Liechtenstein aged 25–
41 years were invited to participate in GAPP. Exclusion cri-
teria were a body mass index (BMI) >35 kg/m2, prevalent
cardiovascular disease, known and treated sleep apnoea
syndrome, renal failure, current intake of antidiabetic
drugs or any other severe illnesses.
Of the 2170 included participants, 1415 (65%) partici-

pants underwent night-time pulse oximetry with nasal
flow measurement. To investigate effects of subclinical
sleep apnoea, participants with a REI≥15 per hour
(n=25) were excluded to minimise confounding due to
potentially undiagnosed OSA syndrome. Further, we
excluded 135 participants due to missing or incomplete
sleep study parameters (n=57), missing ambulatory BP
recordings (n=57) or other missing covariates (n=21),
such that 1255 participants remained for the current
analyses. Written informed consent was obtained from
each participant. The local ethics committee approved
the study protocol.

Night-time pulse oximetry
Night-time pulse oximetry with nasal flow measurement
was performed using the validated ApneaLink (ResMed,
San Diego, California, USA) device24 25 to obtain infor-
mation on night-time oxygen saturation, apnoeas and
hypopnoeas. Sleep study analyses were based on auto-
matic scoring analysis. The sleep study was performed at
the patient’s home. Individuals were instructed by a
trained study nurse on how to put on the nasal cannula
and the oximetry probe. An apnoea was defined as a
reduction of nasal airflow of ≥80% compared with base-
line for ≥10 s. Hypopnoea was defined as a reduction of
nasal airflow of ≥30% compared with baseline followed
by a simultaneous decrease in oxygen saturation ≥4%.
The apnoea index was defined as the number of
apnoeas per hour. The REI was defined as the number
of apnoeas and hypopnoeas per hour of sleep according
to the 2015 updated version of the American Academy
of Sleep Medicine (AASM) criteria.26–28 Subclinical
sleep apnoea was defined to be present when the REI
was 5, but <15 per hour. The ODI was defined as the
number of oxygen desaturations ≥4% per hour of
sleep.29 An ODI of ≥5 per hour was considered to be
abnormal. In addition to REI and ODI, mean night-time
SpO2 and the per cent of total sleep time with
SpO2<90% were calculated.

BP assessment
The 24 hours BP measurements were obtained using a
validated device (BR-102 plus, Schiller AG, Switzerland).
Trained study nurses handled the devices which were pro-
grammed to obtain BP measurements every 15 min
during daytime and every 30 min during night-time. If par-
ticipants had <80% of valid measurements, the BP study
was repeated whenever possible. BP measurements were
only included in the analysis if ≥25 daytime and ≥8 night-
time measurements were available. Daytime and night-
time periods were individually defined through a 24-hour
diary completed by each participant. Daytime hyperten-
sion was defined as mean systolic BP≥135 mmHg and/or
mean diastolic BP≥85 mmHg,30 respectively. Night-time
hypertension was defined as mean systolic BP≥120 mmHg
and/or diastolic BP≥70 mmHg, respectively.30 Individuals
currently taking antihypertensive medication were consid-
ered to be hypertensive.

Blood sampling
Fasting venous blood samples were obtained from each
participant and immediately centrifuged. Blood aliquots
were immediately stored at −80°C. A research-use high-
sensitive, single-molecule counting assay (Erenna
Immunoassay System, Singulex, Alameda, California,
USA) was used to measure ET-1 from frozen EDTA
plasma samples.22 The ET-1 assay’s limits of blank and
quantification were 0.07 and 0.33 pg/mL, respectively.
Interassay coefficients of variation were 7% at an ET-1
concentration of 1.2 pg/mL and 6% at an ET-1 concen-
tration of 1.8 pg/mL.
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Plasma levels of glucose, creatinine, high-sensitive C
reactive protein (hs-CRP), insulin, triglycerides (TG),
high-density lipoprotein (HDL) and low-density lipo-
protein (LDL) cholesterol were analysed on a Roche
Cobas 6000 analyser (F. Hoffmann La Roche,
Switzerland) using fresh blood samples.23 Glycated
haemoglobin (HbA1c) was analysed using high-
performance liquid chromatography (Bio-Rad D-10,
Bio-Rad Laboratories AG, Switzerland).23 Pre-diabetes
was defined as HbA1c between 5.7% and 6.4%. For
the estimation of the glomerular filtration rate
(eGFR), we used the creatinine-based Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI)
formula.23

Assessment of other study variables
Questionnaires were used to obtain information about
personal, medical, lifestyle and nutritional factors.
Smoking status was self-assessed using three categories:
current, past and never. BMI was calculated as body
weight in kilogram divided by height in metres
squared.

Statistical analysis
Distributions of continuous variables were evaluated
using skewness, kurtosis and inspection of the histogram.
Continuous variables were presented as medians (IQRs)
and compared with the Wilcoxon rank sum test.
Categorical variables were compared using χ2 tests.
Owing to its distribution, ET-1 was used as a log-
transformed variable in all analyses. Multivariable linear
regression analyses were constructed using ET-1 as the
outcome variable. Separate models were used to evaluate
different sleep apnoea parameters, including REI, ODI,
mean night-time SpO2 and per cent of sleeping time
with a SpO2<90%. Age, sex and BMI adjusted models
were further adjusted for a predefined set of covariates,
including smoking status, HDL cholesterol, LDL choles-
terol, TG, eGFR, HbA1c, mean systolic and diastolic
ambulatory BP and hs-CRP.
Subgroup analyses were performed for age, sex, BMI,

eGFR, hs-CRP, pre-diabetes, TG, smoking status, and
daytime and/or night-time hypertension. Differences
across subgroups were assessed by including multiplica-
tive interaction terms in the non-stratified models. All
analyses were performed using SAS V.9.4 (SAS Institute,

Table 1 Baseline characteristics according to subclinical sleep apnoea

Characteristic

n=1255

REI<5

n=1150 (92%)

REI 5–14

n=105 (8%) p Value*

Age 35 (30–39) 37 (33–39) 0.02

Males (%) 505 (44%) 85 (81%) <0.0001

Body mass index (kg/m²) 23.9 (21.7–26.5) 27.0 (23.5–30.1) <0.0001

Endothelin (pg/mL) 2.5 (2.1–3.0) 2.9 (2.4–3.6) <0.0001

eGFR, CKD-EPI (mL/min/1.73 m2) 113 (105–119) 110 (101–118) 0.02

Creatinine (μmol/L) 67 (57–76) 74 (67–83) <0.0001

High-sensitive CRP (mg/L) 0.9 (0.5–1.9) 1.4 (0.6–3.2) 0.007

HbA1c (%) 5.4 (5.1–5.6) 5.4 (5.2–5.7) 0.17

24-hour blood pressure (mm Hg)

Systolic 122 (114–130) 128 (119–136) <0.0001

Diastolic 77 (72–82) 81 (76–86) <0.0001

Daytime blood pressure (mm Hg)

Systolic 126 (118–133) 133 (123–142) <0.0001

Diastolic 80 (75–86) 85 (80–89) <0.0001

Night-time blood pressure (mm Hg)

Systolic 107 (101–115) 112 (107–120) <0.0001

Diastolic 65 (60–70) 68 (63–74) <0.0001

Office blood pressure (mm Hg)

Systolic 120 (111–127) 128 (120–133) <0.0001

Diastolic 78 (73–84) 84 (78–86) <0.0001

Low-density lipoprotein (mmol/L) 2.8 (2.3–3.5) 3.2 (2.6–3.9) <0.0001

High-density lipoprotein (mmol/L) 1.5 (1.3–1.8) 1.3 (1.1–1.5) <0.0001

Triglycerides (mmol/L) 0.8 (0.6–1.1) 1.1 (0.8–1.6) <0.0001

Smoking

Current 244 (21%) 32 (30%) 0.01

Past 262 (23%) 22 (21%) 0.09

Never 644 (56%) 51 (49%) 0.03

Values are median (IQRs) or counts (percentages).
*Based on Kruskal-Wallis tests for continuous variables and χ2 tests for categorical variables.
CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; CRP, C reactive protein; eGFR, estimated glomerular filtration rate; HbA1c,
glycated haemoglobin; REI, respiratory event index.
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Cary, North Carolina, USA). A p value <0.05 was used to
indicate statistical significance.

RESULTS
Baseline characteristics
Baseline characteristics stratified by the presence or
absence of subclinical sleep apnoea are presented in
table 1. Of 1255 participants, 590 (47%) were male.
Subclinical sleep apnoea was found among 105 (8%)
participants according to a REI score between 5 and 14,
85 (81%) men and 20 (19%) women (p<0.0001).
Median ET-1 levels were 2.9 pg/mL (IQR 2.4–3.6) and
2.5 pg/mL (IQR 2.1–3.0) among patients with and
without subclinical sleep apnoea (p<0.0001), respect-
ively. Patients with subclinical sleep apnoea were signifi-
cantly older (37 (IQR 33–39) vs 35 years (IQR 30–39)

p=0.02), and had a higher BMI (27 vs 24 kg/m2,
p<0.0001) and higher hs-CRP levels (1.4 (IQR 0.6–3.2)
vs 0.9 mg/L (IQR 0.5–1.9) p=0.0007). They also had
higher 24-hour ambulatory systolic (128 (IQR 119–136)
vs 122 mm Hg (IQR 114–130) p<0.0001) and diastolic
(81 (IQR 76–86) vs 77 mm Hg (IQR 72–82) p<0.0001)
BP levels, a higher prevalence of current smokers (30%
vs 21%, p=0.01), and lower HDL (1.3 (IQR 1.1–1.5) vs
1.5 mmol/l (IQR 1.3–1.8) p<0.0001) and higher LDL
levels (3.2 (IQR 2.6–3.9) vs 2.8 mmol/L (IQR 2.3–3.5)
p<0.0001), as shown in table 1.

Results of sleep study
The results of the sleep study according to subclinical
sleep apnoea are presented in table 2. All sleep apnoea
indices were significantly different between both groups.

Table 2 Results of sleep study according to subclinical sleep apnoea*

Characteristic

n=1255

REI<5

n=1150 (92%)

REI 5–14

n=105 (8%) p Value†

REI 1 (0–2) 8 (6–10)

Oxygen desaturation index 1 (0–2) 8 (6–11) <0.0001

Oxygen desaturation index ≥5 (%) 36 (2%) 88 (71%) <0.0001

Mean night-time SpO2 (%) 95 (94–96) 93 (92–95) <0.0001

Per cent of time with SpO2<90% (%) 0.2 (0–1.2) 2.8 (0.6–10.5) <0.0001

Apnoeas per hour 0 (0–1) 2 (1–4) <0.0001

Hypopnoeas per hour 0 (0–1) 5 (3–6) <0.0001

Sleep duration (hours) 7.3 (6.5–8.0) 7.3 (6.3–8.0) 0.8

Mean heart rate (bpm) 62 (57–68) 62 (58–71) 0.13

Mean breathing rate (breaths/min) 13 (10–15) 12 (9–14) 0.01

Values are median (IQRs), counts or percentages.
*Subclinical sleep apnoea was defined as REI≥5, but <15.
†Based on Kruskal-Wallis tests for continuous variables.
REI, respiratory event index; SpO2, blood oxygen saturation.

Table 3 Sleep apnoea indices and plasma levels of endothelin-1

n=1255 β (95% CI) p Value

Respiratory event index 5–14

Crude model 0.17 (0.10 to 0.24) <0.0001

Age, sex and BMI adjusted model 0.14 (0.07 to 0.21) <0.0001

Multivariable model* 0.13 (0.06 to 0.20) 0.0002

Oxygen-desaturation index ≥5
Crude model 0.14 (0.08 to 0.20) <0.0001

Age, sex and BMI adjusted model 0.11 (0.04 to 0.17) 0.0012

Multivariable model* 0.10 (0.03 to 0.16) 0.003

Mean night-time SpO2 (%)

Crude model −0.034 (−0.046 to −0.021) <0.0001

Age, sex and BMI adjusted model −0.022 (−0.036 to −0.007) 0.003

Multivariable model* −0.018 (−0.033 to −0.003) 0.02

Per cent of time with SpO2<90%

Crude model 0.021 (0.011 to 0.032) <0.0001

Age, sex and BMI adjusted model 0.015 (0.004 to 0.025) 0.008

Multivariable model* 0.012 (0.002 to 0.023) 0.02

Multivariable linear regression models. Endothelin-1 was log-transformed. Per cent of sleeping time with SpO2<90% was log-transformed.
*Adjustment for age, sex, BMI, high-sensitivity C reactive protein, glomerular filtration rate, HbA1c, systolic and diastolic ambulatory blood
pressure, low-density lipoprotein, high-density lipoprotein, triglycerides and smoking status.
β, β coefficient; BMI, body mass index; HbA1c, glycated haemoglobin; SpO2, blood oxygen saturation.
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Patients with subclinical sleep apnoea had a lower
breathing rate, whereas sleep duration and mean heart
rate were not different.

Subclinical sleep apnoea and plasma ET-1 levels
Linear regression models on the relationship between
OSA indices and ET-1 levels are shown in table 3. In
unadjusted models, subclinical sleep apnoea was signifi-
cantly associated with log-transformed ET-1 (β=0.17
(95% CI 0.10 to 0.24) p<0.0001 for a REI 5–14).
Multivariable adjustment slightly attenuated this relation-
ship, but subclinical sleep apnoea remained strongly
associated with ET-1 levels (β=0.13 (95% CI 0.06 to 0.20)
p=0.0002 for a REI 5–14). A similar robust association
was found between ET-1 levels and an elevated ODI,
present in 124 participants (multivariable-adjusted
β=0.10 (95% CI 0.03 to 0.16) p=0.003). Every 1%
decrease in mean night-time SpO2 resulted in an
increase in the plasma concentration of ET-1 of 0.1 pg/
mL, as shown in figure 1. This association remained sig-
nificant after multivariable adjustment (β=0.02 (95% CI
0.003 to 0.033) p=0.02) (table 3). In addition, the per
cent of sleeping time with SpO2<90% was also associated
with plasma levels of ET-1 (multivariable-adjusted
β=0.012 (95% CI 0.002 to 0.023) p=0.02). Figure 2 sum-
marises the effect sizes of the different sleep apnoea
indices on log-transformed plasma levels of ET-1.

Subgroup analyses
Subgroup analyses are presented in table 4. We found a
borderline significant sex by REI interaction (p value
0.049), suggesting that the association between subclin-
ical sleep apnoea and ET-1 may be somewhat stronger
among women (β=0.27 (95% CI 0.12 to 0.43) p=0.0005
for a REI 5–14). No evidence for effect modification was
found for the other parameters investigated, including
age, BMI, pre-diabetes, smoking status, hypertension,
eGFR, hs-CRP and TG.

DISCUSSION
To the best of our knowledge, this is the first large
population-based study investigating the relationship
between subclinical sleep apnoea and plasma levels of
ET-1 among young and healthy adults. In our analysis,
we found a strong and independent relationship
between several OSA indices and plasma levels of ET-1
that was mainly mediated by hypoxaemia subsequent to
apnoeas and hypopnoeas. All parameters related to
intermittent or continuous hypoxaemia were signifi-
cantly associated with ET-1 levels, including mean night-
time SpO2, per cent of sleeping time with SpO2<90%,
ODI≥5 and REI 5–14. According to these findings, our
data suggest that ED might already be present in subclin-
ical sleep apnoea and that it may be directly caused by
hypoxaemia. It is important to re-emphasize that con-
founding effects of undiagnosed OSA were minimised
by excluding all participants with REI≥15.

If we assume that ET-1 is a direct marker of ED,17 31 32

then taking into account competing risk factors for ED
such as hypertension, diabetes and obesity is of utmost

Figure 1 Median levels of plasma ET-1 according to mean

night-time SpO2. Dashed line=regression line adjusted for

age, sex, body mass index, high-sensitivity C reactive protein,

glomerular filtration rate, HbA1c, systolic and diastolic

ambulatory blood pressure, low-density lipoprotein,

high-density lipoprotein, triglycerides and smoking status.

ET-1, endothelin-1; HbA1c, glycated haemoglobin; Mean

SpO2, mean night-time blood oxygen saturation.

Figure 2 Sleep apnoea indices and plasma levels of

endothelin-1. Multivariable linear regression models.

Endothelin-1 was log-transformed. Adjustment for age, sex,

body mass index, high-sensitivity C reactive protein,

glomerular filtration rate, HbA1c, systolic and diastolic

ambulatory blood pressure, low-density lipoprotein,

high-density lipoprotein, triglycerides and smoking status.

SpO2, mean night-time blood oxygen saturation. The 2% ↓
SpO2 defined as the reduction of the mean night-time SpO2

by 2%, for example, from 97% to 95%. β, β coefficient;

HbA1c, glycated haemoglobin; ODI, oxygen desaturation

index; REI, respiratory event index; Time <90%, per cent of

sleeping time with SpO2<90%.
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importance, because of the multifactorial and complex
genesis of vascular dysfunction. It is therefore important
to emphasise that our results remained highly significant
after comprehensive multivariable adjustment. It is also
noteworthy that our results were obtained in a cohort of
young and healthy adults with very low plasma ET-1
levels and a low burden of comorbidities. Our findings
suggest that even subclinical forms of OSA may impair
endothelial function. In this context, our findings are in
accordance with prior basic experimental studies
showing that intermittent hypoxaemia impairs endothe-
lial function33–35 and increases the production of ET-1
in cultured human endothelial cells14 as well as in vivo
among untreated patients with severe OSA.36 Kato et al37

showed an impairment of resistance-vessel endothelium-
dependent vasodilation among eight middle-aged
patients with OSA compared with nine control patients
underscoring the relationship between OSA and hyper-
tension. Finally, the magnitude of the association
between subclinical sleep apnoea and ET-1 should also
be stressed. We previously showed that in this cohort,
elevated ET-1 levels were strongly related to currently

smoking cigarettes.38 The β coefficients for subclinical
sleep apnoea exceeded those for smoking, underscoring
the potential importance of subclinical sleep apnoea in
the pathogenesis of cardiovascular disease.
Sex-specific analyses suggested that the relationship

between subclinical sleep apnoea and ET-1 levels seems
to be stronger among women. While the p value of
interaction was of borderline significance, there are
recent studies also reporting sex-specific differences in
the relationship between OSA and plasma levels of
cardiac troponin T.39 This study showed a significant
association between a diagnosis of OSA and plasma
levels of troponin T among middle-aged women but not
men.39 These findings may suggest that the effect of
OSA may be particularly deleterious among women, but
further studies are needed to confirm this hypothesis.
The major strengths of this study include its

population-based design and the large number of well-
characterised young and healthy participants undergo-
ing night-time pulse oximetry with nasal airflow meas-
urement. In this population, exposure to environmental
confounders is relatively short and individuals with pre-

Table 4 Subclinical sleep apnoea and plasma levels of ET-1, stratified by selected baseline characteristics

n=1255 β (95% CI) p Value p Value for interaction

Age

<35 years (n=599) 0.26

Multivariable model* 0.17 (0.05 to 0.28) 0.004

≥35 years (n=656)

Multivariable model* 0.10 (0.01 to 0.18) 0.03

Sex

Men (n=590) 0.049

Multivariable model* 0.10 (0.03 to 0.17) 0.008

Women (n=665)

Multivariable model* 0.27 (0.12 to 0.43) 0.0005

BMI

≥25 kg/m² (n=507) 0.16

Multivariable model* 0.15 (0.06 to 0.24) 0.001

<25 kg/m² (n=748)

Multivariable model* 0.08 (−0.03 to 0.19) 0.17

Pre-diabetes

Yes (n=278) 0.28

Multivariable model* 0.11 (−0.01 to 0.23) 0.06

No (n=977)

Multivariable model* 0.14 (0.05 to 0.22) 0.001

Smoking status 0.09

Current Smoking* (n=276) 0.17 (0.03 to 0.31) 0.015

Past Smoking* (n=284) 0.02 (−0.13 to 0.16) 0.83

Never Smoking* (n=695) 0.18 (0.08 to 0.28) 0.0003

Hypertension

Yes (n=433) 0.22

Multivariable model* 0.10 (0.01 to 0.19) 0.03

No (n=822)

Multivariable model* 0.16 (0.06 to 0.27) 0.002

ET-1 was log-transformed. Hypertension was defined as mean ambulatory daytime blood pressure ≥135/85 mm Hg. Pre-diabetes was
defined as HbA1c≥5.7%.
*Adjustment for age, sex, BMI, high-sensitivity C reactive protein, glomerular filtration rate, mean systolic and diastolic ambulatory blood
pressure, low-density lipoprotein, high-density lipoprotein, triglycerides, HbA1c and smoking status as appropriate.
β, β coefficient; BMI, body mass index; ET-1, endothelin-1; HbA1c, glycated haemoglobin.
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existing cardiovascular comorbidities were excluded.
There are also some potential limitations that should be
taken into consideration for the interpretation of our
results. First, the cross-sectional design does not allow us
to draw causal inferences or to assess the directionality
of the observed effects. However, it is very unlikely that
increased ET-1 levels induce night-time hypoxaemia,
such that the latter seems to be the driving force for ele-
vated ET-1 levels.40 Second, the generalisability of our
results to other populations is uncertain. Third, we did
not use polysomnography as the gold standard diagnos-
tic tool for sleep apnoea. However, it has been shown
that combining pulse oximetry with nasal flow measure-
ment has a high sensitivity and specificity for detecting
patients with sleep apnoea.24 25 Finally, we did not dir-
ectly measure endothelial function in our population.
However, previous studies showed a good correlation
between plasma ET-1 levels and endothelial function.18

In conclusion, this study of young and healthy adults
provides strong evidence of an independent relationship
between subclinical sleep apnoea and plasma levels of
ET-1. Our results further suggest that the increased ET-1
levels might be directly related to apnoea-induced hypox-
aemia and that this phenomenon is already present in
young and healthy individuals at a subclinical stage.
These findings are independent of other important
cardiovascular risk factors (eg, smoking, BMI, BP, renal
function) and may, at least in part, explain the tight rela-
tionship of clinical sleep apnoea syndrome with hyperten-
sion and other adverse cardiovascular events.
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